gradually changes to chlorite, forming with it a disordered mixed layer structure (Fig.3<u>A</u> and <u>B</u>: at temperatures above 400° C reflection with <u>d</u>~14A is no longer shifted towards ~ 18 A in montmorillonite saturated with glycerine, and does not decrease sharply to 9.9 A in montmorillonite heated for 2 hours at 600°C). The transformation of montmorillonite to chlorite at <u>P_{H20} = 1400 kd/cm² is shown in Fig.4</u>. The diagram shows change in the value of <u>d₁₀₀</u> in untreated montmorillonite (<u>a</u>), montmorillonite saturated with glycerine (<u>b</u>), and montmorillonite heated for 2 hours at 600°C (<u>c</u>). The formation of discdered mixed layer

montmorillonite-chlorite structure begins

at point A (500°C, 1400 kg/cm²). At 650°C

Fig.4

the structure becomes strictly non-expandable. If, instead of the mixed layer phase, chlorite is taken as the end member in the montmerillenite -- chlorite transformation, the transformation may be represented by equation:

2(Mg1.78^{Fe}0.35^{A1}1.22)(Si7.41^{A1}0.59)020(OH)4.<u>nH2</u>0 ->

->(Mg3.56Fe0.70Al1.74)(Si2.12Al1.88)010(CH)8 + 12.7Si02 +

++mH20

The silica released in this reaction crystallizes as quartz,

6